skip to main content


Search for: All records

Creators/Authors contains: "Yang, Dedi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Tall deciduous shrubs are critically important to carbon and nutrient cycling in high-latitude ecosystems. As Arctic regions warm, shrubs expand heterogeneously across their ranges, including within unburned terrain experiencing isometric gradients of warming. To constrain the effects of widespread shrub expansion in terrestrial and Earth System Models, improved knowledge of local-to-regional scale patterns, rates, and controls on decadal shrub expansion is required. Using fine-scale remote sensing, we modeled the drivers of patch-scale tall-shrub expansion over 68 years across the central Seward Peninsula of Alaska. Models show the heterogeneous patterns of tall-shrub expansion are not only predictable but have an upper limit defined by permafrost, climate, and edaphic gradients, two-thirds of which have yet to be colonized. These observations suggest that increased nitrogen inputs from nitrogen-fixing alders contributed to a positive feedback that advanced overall tall-shrub expansion. These findings will be useful for constraining and projecting vegetation-climate feedbacks in the Arctic.

     
    more » « less
  2. Free, publicly-accessible full text available September 1, 2024
  3. Abstract

    Observing the environment in the vast regions of Earth through remote sensing platforms provides the tools to measure ecological dynamics. The Arctic tundra biome, one of the largest inaccessible terrestrial biomes on Earth, requires remote sensing across multiple spatial and temporal scales, from towers to satellites, particularly those equipped for imaging spectroscopy (IS). We describe a rationale for using IS derived from advances in our understanding of Arctic tundra vegetation communities and their interaction with the environment. To best leverage ongoing and forthcoming IS resources, including National Aeronautics and Space Administration’s Surface Biology and Geology mission, we identify a series of opportunities and challenges based on intrinsic spectral dimensionality analysis and a review of current data and literature that illustrates the unique attributes of the Arctic tundra biome. These opportunities and challenges include thematic vegetation mapping, complicated by low‐stature plants and very fine‐scale surface composition heterogeneity; development of scalable algorithms for retrieval of canopy and leaf traits; nuanced variation in vegetation growth and composition that complicates detection of long‐term trends; and rapid phenological changes across brief growing seasons that may go undetected due to low revisit frequency or be obscured by snow cover and clouds. We recommend improvements to future field campaigns and satellite missions, advocating for research that combines multi‐scale spectroscopy, from lab studies to satellites that enable frequent and continuous long‐term monitoring, to inform statistical and biophysical approaches to model vegetation dynamics.

     
    more » « less
  4. null (Ed.)